如图,将三角形ABC纸片沿DE折叠,使点A落在四边形BCDE内点A'的位置,探索...

发布网友 发布时间:2024-10-23 23:12

我来回答

2个回答

热心网友 时间:16小时前

如图,由已知得
a点与a'点关于de对称,∠a'=∠a,且∠3<90°、∠4<90°
∴△a'de≌△ade
∠3=∠5,∠4=∠6
又,∠2+∠5=∠4+∠a'..............(1) △的外角=不相邻的两个内角和
∠1+∠6=∠3+∠a'....................(2)
(1)+(2)并化简
∠1+∠2=∠4+∠a'+∠3+∠a'-∠5-∠6=2∠a'=2∠a........(3)
所以
1,若∠a=40°,则由(3)式∠1+∠2=2∠a=2×40=80°
2,即(3)式 ∠1+∠2=2∠a
如果 点a落在四边形bcde的外部
则∠3或∠4必有一个大于90°,设∠4大于90°
同理可得
∠2-∠1=2∠a

热心网友 时间:16小时前

将点A翻回去,设为A'
则∠A'+∠A'ED+∠A'DE=180°
∵翻折
∴∠A'ED=∠AED
∠A'DE=∠ADE
∴∠1+2∠A'ED=180°
∠2+2∠A'DE=180°
∴∠1+∠2+(2∠A'ED+2∠A'DE)=360°
∠1+∠2+2(180°-∠A)=360°
∴∠1+∠2=2∠A
【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com