您的当前位置:首页完全平方公式

完全平方公式

2021-07-03 来源:世旅网

  教学目标:

  1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

  2.会推导完全平方公式,并能运用公式进行简单的计算;

  3.了解完全平方公式的几何背景. 教学重点:

  1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;

  2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算 教学过程:一、探索练习:

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)

  用不同的形式表示实验田的总面积,并进行比较你发现了什么?

  观察得到的式子,想一想:

  (1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?

  (2)(a-b)2等于什么?小颖写出了如下的算式:

  (a-b)2=[a+(—b)]2.

  她是怎么想的?你能继续做下去吗?

  由此归纳出完全平方公式:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2—2ab+b2

  教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.

  例:(利用完全平方公式计算)

  (1)(2x-3)2

  解:(2x-3)2

  =(2x)2-2·(2x)·3+32

  =4x–12x+9二、巩固练习:

  1.下列各式中哪些可以运用完全平方公式计算_______________

  (1) ;(2) ;

  (3) ;(4) .

  2.计算下列各式:

  (1) ;(2) ;(3) ;

  (4) ;(5) ;

  (6) .

  4.填空:

  (1) _____________;(2) ;

  (3) ; 三、提高练习:

  1.求 的值,其中

  2.若                                                                                                                   小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本p36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2对公式的真正理解有待加强.

因篇幅问题不能全部显示,请点此查看更多更全内容