您的当前位置:首页numpy.append()中axis三种用法介绍

numpy.append()中axis三种用法介绍

2024-07-16 来源:世旅网

小编介绍过,在numpy.append()有三个参数,其中arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值,根据不同的axis的不同条件,numpy.append()的使用方法也不同,本文介绍numpy.append()中axis三种用法。

numpy.append()中axis三种用法

1、axis无定义:返回总是为一维数组

如果axis没有给出,那么arr,values都将先展平成一维数组。

返回由arr和values组成的新数组。

import numpy as np
a=[1,2,3]
b=[4,5]
c=[[6,7],[8,9]]
print(np.append(a,b))
print(np.append(a,c))

输出

[1 2 3 4 5]
[1 2 3 6 7 8 9]

2、axis=0的情况:数组是加在下面(列数要相同)

axis=0,表示针对第1维进行操作,可以简单的理解为,加在了行上。所以行数增加,列数不变。

import numpy as np
aa= np.zeros((1,8))
bb=np.ones((3,8))
c = np.append(aa,bb,axis = 0)
print(c)

输出

[[ 0.  0.  0.  0.  0.  0.  0.  0.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.]]

3、axis=1的情况:数组是加在右边(行数要相同)

拓展列,行数不变。行数需要相同。

import numpy as np
 
DYX = np.zeros((3,1))
HXH = np.ones((3,8))
XH = np.append(DYX, HXH,axis=1)
 
print(DYX) #(3,1)
"""
[[0.]
 [0.]
 [0.]]
"""
 
print(HXH) # (3,8)
"""
[[1. 1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1. 1.]]
"""
 
#最终结果:
print(XH)
"""
[[0. 1. 1. 1. 1. 1. 1. 1. 1.]
 [0. 1. 1. 1. 1. 1. 1. 1. 1.]
 [0. 1. 1. 1. 1. 1. 1. 1. 1.]]
"""
 
print(XH.shape)  #(3, 9)
#axis = 1,在第二维上拼接,所以说,(3,1)和(3,8)就变成了(3,9)

numpy.append()语法格式

numpy.append(arr, values, axis=None):

以上就是numpy.append()中axis三种用法介绍,希望能对你有所帮助哟~更多python高级学习推荐:。

(推荐操作系统:windows7系统、Python 3.9.1,DELL G3电脑。)

显示全文